Ch 6 Régime sinusoïdal monophasé Régime permanent sinusoïdal Simulation AC

Formation

Electronique Physique, UniNE Docteur ès Sciences, UniNE (PhD)

Expérience professionnelle

Plus de 20 ans dans la recherche Responsable d'un groupe de recherche, ESPLAB EPFL Implications dans des sociétés «startup»

Situation actuelle

50% EPFL au LAI/CAM, recherche, co-directeur de thèses 50% He-Arc, recherche et enseignement

Cours: Electrotechnique

Electronique

Technologie RF

Quiz semaine 5

Nombre de tentatives : 43 < 15% Moyenne générale : 4.43 / 9.00 **→ 3.5** Q1 (Dipôle - Isoler un dipôle) : **0.32/1.00** $\rightarrow 2.6$ Q2 (Tripôle équivalent - Conversion Pi-T.) : **0.74/1.00** \rightarrow 4.7 Q3 (Principe de superposition - Schémas équivalents.) : **0.81/1.00** \rightarrow 5.1 Q4 (Max de puissance - Déviation p.r. au maximum.) : **0.44/1.00** \rightarrow 3.2 Q5 (Max de puissance - Eloignement du point max et rdt augmente) : **0.26/1.00** \rightarrow 2.3 Q6 (Sources de courant - Addition): **0.71/1.00** $\rightarrow 4.6$ Q7 (Superposition - Sources réelles): **0.37/1.00** $\rightarrow 2.9$ Q8 (Superposition - Sources non réelles) : **0.33/1.00** $\rightarrow 2.7$ Q9 (Circuits équivalents - Annulation de sources) : **0.45/1.00** \rightarrow 3.3

Ch 6 Régime sinusoïdal monophasé Régime permanent sinusoïdal Simulation AC

- excitations (courant/tension) → fonctions sinusoïdales (ou cosinusoïdales)
 - → supposées établies dans le temps depuis l'infini
 - → circuits linéaires (R, L, C)
 - → réponses (courant/tension) → fonctions sinusoïdales

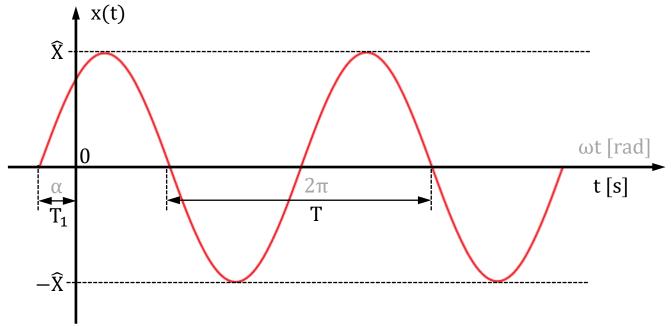
Important

$$\rightarrow \frac{d}{d\alpha}\sin\alpha = \cos\alpha$$

$$\rightarrow \frac{\mathrm{d}}{\mathrm{d}\alpha}\cos\alpha = -\sin\alpha = \cos\left(\alpha + \frac{\pi}{2}\right)$$

6.2 Grandeurs sinusoïdales

Expression analytique et définitions des paramètres



$$x(t) = \widehat{X} \sin(\frac{2\pi}{T}t + \alpha)$$

Amplitude:

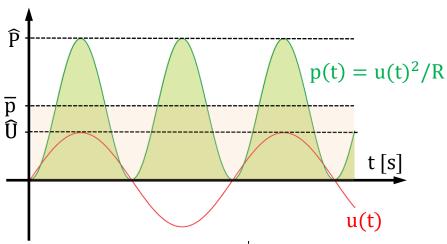
Phase initiale:

Période : $T = \frac{1}{f}$ Pulsation : $\omega = 2\pi \ f = \frac{2\pi}{T}$

- Tension $u = u(t) = \widehat{U} \cos(\omega t + \alpha)$
- Courant $i = i(t) = \hat{I} \cos(\omega t + \beta)$
- Définition: Déphasage entre u et i : $\varphi = \alpha \beta$
- En phase: toutes les grandeurs ont même f, différence de phase est 0
- En quadrature: toutes les grandeurs ont même f, différence de phase est $\pm \frac{\pi}{2}$

6.2.13 Puissance instantanée

En résumé



 \widehat{U} : tension de crête

P: puissance de crête

Tension instantanée

Puissance instantanée

 $p = u \cdot i$

Puissance moyenne

p =

u

Tension efficace

$$U = \sqrt{\frac{1}{T} \int_{0}^{T} u^{2} dt} = \frac{\widehat{U}}{\sqrt{2}}$$

Pour le régime sinusoïdal

 $= \widehat{\mathbf{U}} \cdot \cos(\omega \mathbf{t} + \alpha)$

$$= R \cdot i$$

$$= \frac{\widehat{U}^2}{R} \cos^2(\omega t + \alpha)$$

$$\widehat{U}^2$$

Pour une résistance

$$=\frac{\hat{U}^2}{2R}$$

Dans le cas d'une résistance et pour le régime DC

$$P = \frac{U^2}{R}$$

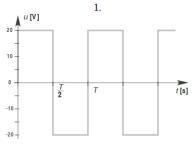
Laboratoire d'actionneurs intégrés (LAI)

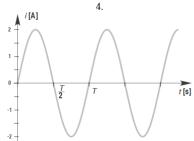
Valeurs moyenne et efficace - Exercice 1 § 6.7.1

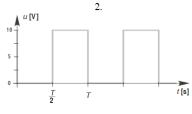
Pour chacun des six signaux suivants, calculez-en:

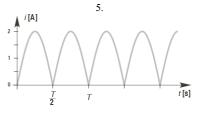
Electrotechnique

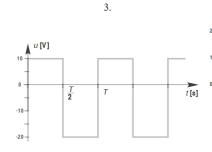
- a) La valeur moyenne;
 - c) La valeur maximum (de crête). b) La valeur efficace;

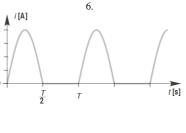












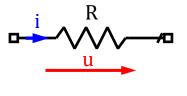
1

$$\overline{u} = \frac{1}{T} \int\limits_0^T u \, dt$$

$$U = \sqrt{\frac{1}{T}} \int_{0}^{T} u^{2} dt$$

Û

6.2.14 Cas de la résistance



&
$$\mathbf{u} = \hat{\mathbf{U}} \cdot \cos(\omega t + \alpha)$$

 $\mathbf{i} = \hat{\mathbf{I}} \cdot \cos(\omega t + \beta)$

$$u = R \cdot i$$

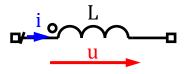
$$\widehat{\mathbf{U}} \cdot \cos(\omega t + \alpha) = \mathbf{R} \cdot \widehat{\mathbf{I}} \cdot \cos(\omega t + \beta)$$

Il en résulte:

$$\widehat{U} = R \cdot \widehat{I}$$
$$\alpha = \beta$$

→ tension et courant sont en phase

6.2.15 Cas de l'inductance



&
$$\mathbf{u} = \widehat{\mathbf{U}} \cos(\omega t + \alpha)$$

 $\mathbf{i} = \widehat{\mathbf{I}} \cdot \cos(\omega t + \beta)$

On se souvient que :

$$u = L \cdot \frac{di}{dt}$$

Ainsi:

$$\widehat{\mathbf{U}} \cdot \cos(\omega t + \alpha) = -\omega \, \mathbf{L} \, \widehat{\mathbf{I}} \cdot \sin(\omega t + \beta)$$

$$= \omega \, \mathbf{L} \, \widehat{\mathbf{I}} \cdot \cos(\omega t + \beta + \frac{\pi}{2})$$

$$\sin(t) = -\cos(t + \frac{\pi}{2})$$

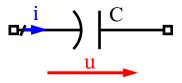
Il en résulte:

$$\widehat{U} = \omega L \widehat{I}$$

$$\alpha = \beta + \frac{\pi}{2}$$

- → tension et courant sont en quadrature
- ightarrow le courant est en retard de $\frac{\pi}{2}$ sur la tension

6.2.16 Cas du condensateur



&
$$\mathbf{u} = \hat{\mathbf{U}} \cos(\omega t + \alpha)$$

 $\mathbf{i} = \hat{\mathbf{I}} \cdot \cos(\omega t + \beta)$

On se souvient que :

$$i = C \cdot \frac{du}{dt}$$

Ainsi:

$$\hat{\mathbf{I}} \cdot \cos(\omega t + \beta) = -\omega \, \mathbf{C} \, \hat{\mathbf{U}} \cdot \sin(\omega t + \alpha)$$

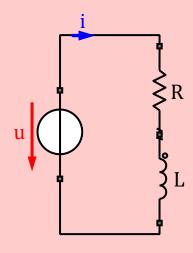
$$= \omega \, \mathbf{C} \, \hat{\mathbf{U}} \cdot \cos(\omega t + \alpha + \frac{\pi}{2})$$

Il en résulte:

$$\widehat{U} = \frac{\widehat{I}}{\omega C}$$

$$\alpha = \beta - \frac{\pi}{2}$$

- → tension et courant sont en quadrature
- ightarrow le courant est en avance de $\frac{\pi}{2}$ sur la tension



Par Kirchhoff

$$u = R \cdot i + L \cdot \frac{di}{dt}$$

$$\widehat{\mathbf{U}} \cdot \cos(\omega t + \alpha) = R \, \widehat{\mathbf{I}} \cdot \cos(\omega t + \beta) - \omega \, \mathbf{L} \, \widehat{\mathbf{I}} \cdot \sin(\omega t + \beta)$$

$$\begin{split} \widehat{\mathbb{U}}\{\cos(\omega t) \cdot \cos(\alpha) - \sin(\omega t) \cdot \sin(\alpha)\} = \\ \widehat{\mathbb{I}}\left\{R \cdot \cos(\omega t) \cdot \cos(\beta) - R \cdot \sin(\omega t) \cdot \sin(\beta) \\ -\omega L \cdot \sin(\omega t) \cdot \cos(\beta) \\ -\omega L \cdot \cos(\omega t) \cdot \sin(\beta)\right\} \end{split}$$

Par identification

$$\widehat{\mathbf{U}}\cos(\alpha) = \mathbf{R}\,\widehat{\mathbf{I}}\cos(\beta) - \omega\mathbf{L}\,\widehat{\mathbf{I}}\sin(\beta) \qquad \leftarrow \cos(\omega t)$$

$$\widehat{\mathbf{U}}\sin(\alpha) = \mathbf{R}\,\widehat{\mathbf{I}}\sin(\beta) + \omega\mathbf{L}\,\widehat{\mathbf{I}}\cos(\beta) \qquad \leftarrow \sin(\omega t)$$

En faisant la somme des carrés, après beaucoup de calculs:

$$\widehat{U} = \sqrt{R^2 + \omega^2 L^2} \cdot \widehat{I}$$

$$\alpha = \beta + \phi$$
Trop compliqué

On passe au calcul complexe associé

Rappels

La formule d'Euler

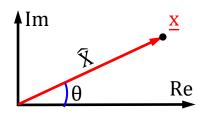
Coord. polaires

$$\underline{\mathbf{x}} = \widehat{\mathbf{X}} \, \mathbf{e}^{\mathbf{j}\theta}$$

Coord. cartésiennes

$$\underline{\mathbf{x}} = \mathbf{a} + \mathbf{j} \, \mathbf{b}$$

Dans le plan complexe



$$\widehat{X} = \sqrt{a^2 + b^2}$$

$$\theta = \operatorname{Arctg}\left(\frac{b}{a}\right)$$

$$a = \widehat{X} \cos \theta$$

$$b = \hat{X} \sin \theta$$

On va écrire

$$\underline{\mathbf{u}} = \widehat{\mathbf{U}} e^{\mathbf{j}(\omega t + \alpha)}$$

$$\underline{\mathbf{i}} = \widehat{\mathbf{I}} e^{\mathbf{j}(\omega t + \beta)}$$

Tension complexe

Courant complexe

Propriétés

$$\frac{d\underline{i}}{dt} = ? = j\omega \, \hat{\underline{I}} \, e^{j(\omega t + \beta)} = j\omega \, \underline{\underline{i}}$$

$$\int \underline{i} \, dt = ? = \frac{1}{j\omega} \, \hat{\underline{I}} \, e^{j(\omega t + \beta)} = \frac{1}{j\omega} \, \underline{\underline{i}}$$

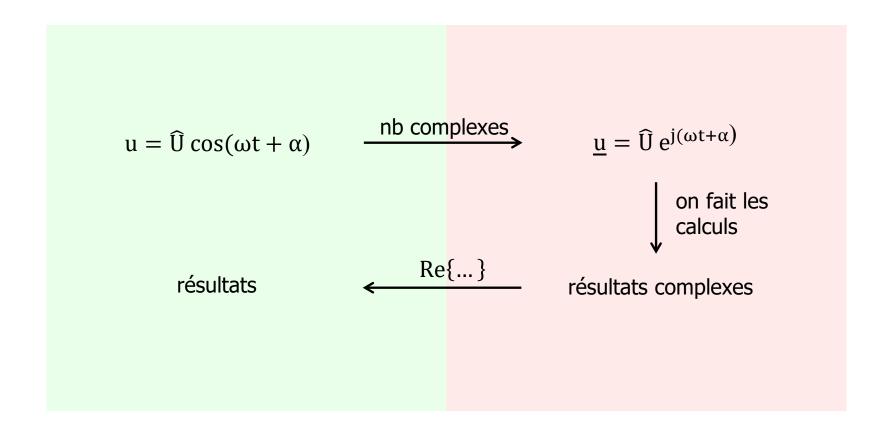
$$\int \underline{i} dt =? = \frac{1}{j\omega} \underbrace{\hat{I} e^{j(\omega t + \beta)}}_{\underline{i}} = \frac{1}{j\omega} \underline{i}$$

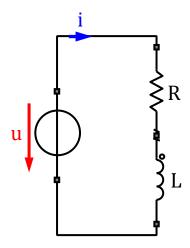
$$\frac{d \dots}{dt} \rightarrow j\omega$$

$$\int \dots dt \to \frac{1}{j\omega}$$

6.3 Calcul complexe associé

Stratégie





$$u = \widehat{U} \cdot \cos(\omega t + \alpha)$$
$$i = \widehat{I} \cdot \cos(\omega t + \beta)$$

- 1. On construit nos vecteurs complexes pour la tension et le courant
- 2. On applique Kirchhoff
- 3. La dérivée du courant est remplacée par jω qui multiplie le courant
- 4. Par Euler on peut passer de la notation polaire à la notation cartésienne (et inversement)
- 5. Cela nous permet de trouver une expression reliant la tension au courant
- 6. On peut finalement revenir dans le monde réel en ne considérant que la partie réelle

1) On construit nos vecteurs complexes

$$u \rightarrow \underline{u} = \widehat{U} e^{j(\omega t + \alpha)}$$
 $i \rightarrow \underline{i} = \hat{I} e^{j(\omega t + \beta)}$

2) On applique Kirchhoff

$$\underline{\mathbf{u}} = \mathbf{R} \cdot \underline{\mathbf{i}} + \mathbf{L} \cdot \frac{\mathbf{d}\underline{\mathbf{i}}}{\mathbf{d}\mathbf{t}}$$

3) Dérivée: jω Intégrale: 1/jω

$$\underline{\mathbf{u}} = \mathbf{R} \cdot \underline{\mathbf{i}} + \mathbf{j} \omega \mathbf{L} \cdot \underline{\mathbf{i}}$$
$$= (\mathbf{R} + \mathbf{j} \omega \mathbf{L}) \cdot \underline{\mathbf{i}}$$

4) Notation polaire ↔ notation cartésienne

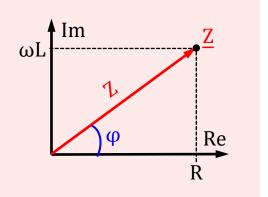
5) Expression reliant tension et courant

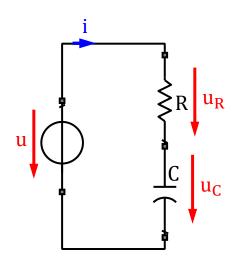


6) Résultats Re{···}

$$\begin{split} \widehat{U} \cdot \cos(\omega t + \alpha) &= Z \, \hat{I} \cdot \cos(\omega t + \beta + \phi) \\ i &= \hat{I} \cdot \cos(\omega t + \beta) \\ \widehat{I} &= \frac{\widehat{U}}{Z} \\ \beta &= \alpha - \phi \end{split} \qquad \begin{aligned} \text{et} \qquad Z &= \sqrt{R^2 + \omega^2 L^2} \\ \phi &= \text{Arctg} \left(\frac{\omega L}{R} \right) \end{aligned}$$

Dans le plan complexe





On a: $u = \widehat{U} \cdot \cos(\omega t + \alpha)$

 $i = \hat{I} \cdot \cos(\omega t + \beta)$

Connu : \widehat{U} , α , ω , R et C

Nous cherchons : \hat{I} , β , ϕ et Z Déphasage entre u et i Qui lie \widehat{U} à \hat{I}

La méthode:

- 1) Dessiner le schéma (et définir ce qui est connu et recherché)
- 2) Définir le sens des tensions et des courants
- 3) Appliquer Kirchhoff (et ce qui lie courant et tension pour RLC)

$$u = u_R + u_C$$

$$= R \cdot i + \frac{1}{C} \int i \, dt$$

$$u_C = \frac{1}{C} \int i \, dt$$

4) Passage au calcul complexe

$$\underline{\mathbf{u}} = \mathbf{R} \cdot \underline{\mathbf{i}} + \frac{1}{\mathbf{C}} \int \underline{\mathbf{i}} \, d\mathbf{t}$$

5) Dériver et intégrer

$$\frac{\mathrm{d} \dots}{\mathrm{dt}} \to \mathrm{j}\omega$$

$$\frac{d \dots}{dt} \to j\omega$$

$$\int \dots dt \to \frac{1}{j\omega}$$

6) Résoudre et identifier

$$\underline{\mathbf{u}} = \mathbf{R} \cdot \underline{\mathbf{i}} + \frac{1}{j\omega C} \underline{\mathbf{i}}$$

$$= \left(\mathbf{R} + \frac{1}{j\omega C}\right) \underline{\mathbf{i}}$$

$$= \mathbf{R} - \frac{\mathbf{j}}{\omega C}$$

$$= \mathbf{R} - \frac{\mathbf{j}}{\omega C}$$

$$= \mathbf{Z} e^{j\varphi}$$

$$\underline{\mathbf{u}} = \widehat{\mathbf{U}} e^{j(\omega t + \alpha)}$$

$$\underline{\mathbf{i}} = \widehat{\mathbf{I}} e^{j(\omega t + \beta)}$$

$$\mathbf{Im}$$

$$\frac{-1}{\omega C}$$

$$\mathbf{Z}$$

$$\widehat{\mathbf{U}} \cdot \mathbf{e}^{\mathbf{j}(\omega t + \alpha)} = \mathbf{Z} \, \mathbf{e}^{\mathbf{j}\phi} \cdot \, \widehat{\mathbf{I}} \cdot \mathbf{e}^{\mathbf{j}(\omega t + \beta)}$$

$$\widehat{U} \cdot e^{j\omega t} \cdot e^{j\alpha} = Z \, e^{j\phi} \, \cdot \widehat{I} \cdot e^{j\omega t} \cdot e^{j\beta} \quad \leftarrow \text{Ne dépend pas du temps}$$

$$\widehat{U} \cdot e^{j(\omega t + \alpha)} = Z e^{j\phi} \cdot \underline{i}$$

$$\underline{i} = \frac{\widehat{U}}{Z} \cdot e^{j(\omega t + \alpha - \phi)}$$

8) Solutions complexes et réelles

$$\underline{i} = \hat{I} \cdot e^{j(\omega t + \beta)} = \frac{\widehat{U}}{Z} \cdot e^{j(\omega t + \alpha - \phi)}$$

$$\downarrow Re\{...\}$$

$$i = \frac{\widehat{U}}{Z} \cdot \cos(\omega t + \alpha - \phi)$$

$$\hat{I} \qquad \beta$$

$$\hat{I} = \frac{\widehat{U}}{Z}$$
$$\beta = \alpha - \phi$$

$$\hat{I} = \frac{\widehat{U}}{Z}$$

$$\beta = \alpha - \phi$$
avec
$$Z = \sqrt{R^2 + \left(\frac{1}{\omega C}\right)^2}$$

$$\phi = \text{Arctg}\left(\frac{-1}{\omega RC}\right)$$

- «Re»dessiner le schéma
 - > et définir ce qui est connu et recherché
- 2. Définir le sens des tensions et des courants
- 3. Appliquer Kirchhoff (pour les mailles et les nœuds)
 - > et ce qui lie courant et tension pour RLC
- 4. Passage au «calcul complexe»
- 5. Dériver $(j\omega)$ et intégrer $(1/j\omega)$
- 6. Résoudre et identifier
- 7. Solutions complexes et réelles

Définitions

Valeur instantanée complexe et phaseurs complexes

$$\underline{\mathbf{u}} = \widehat{\mathbf{U}} \, \mathbf{e}^{\mathbf{j}(\omega \mathbf{t} + \alpha)}$$

→ Valeur instantanée complexe → dépend du temps

$$\underline{\widehat{U}} = \widehat{U} e^{j \alpha}$$

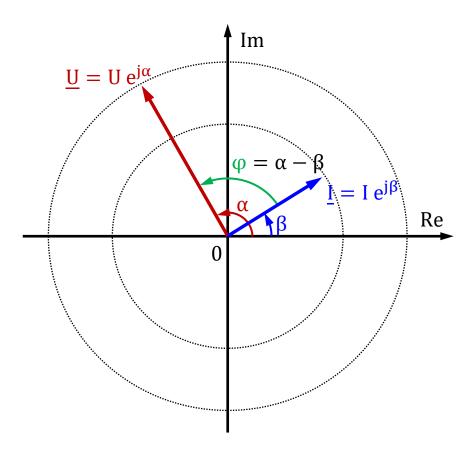
→ Phaseur de crête

→ ne dépend pas du temps

$$\underline{U} = U e^{j \alpha}$$

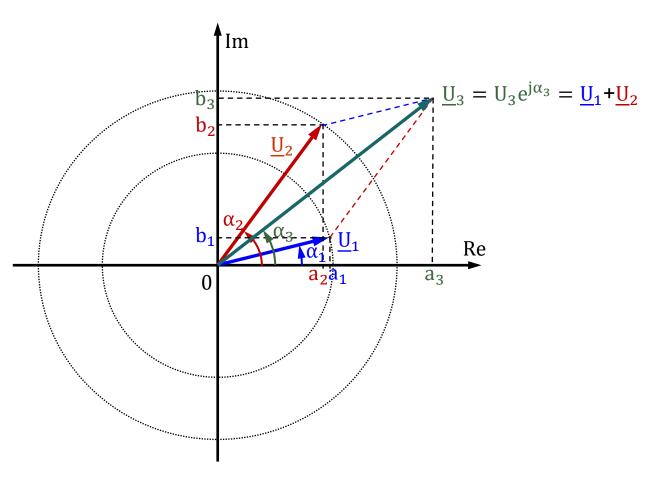
→ Phaseur (avec valeur efficace) → ne dépend pas du temps

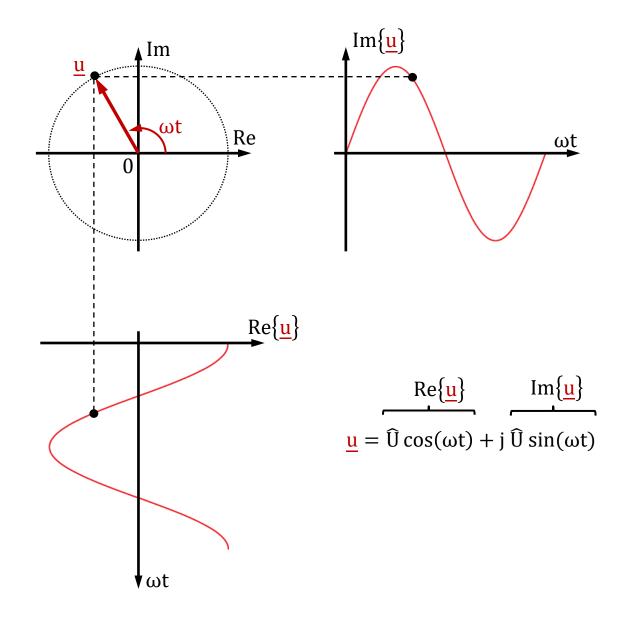
Diagramme des phaseurs

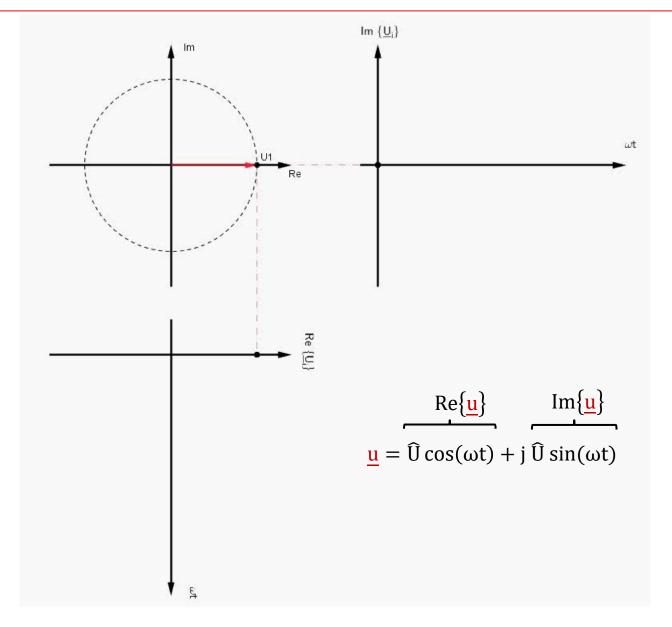


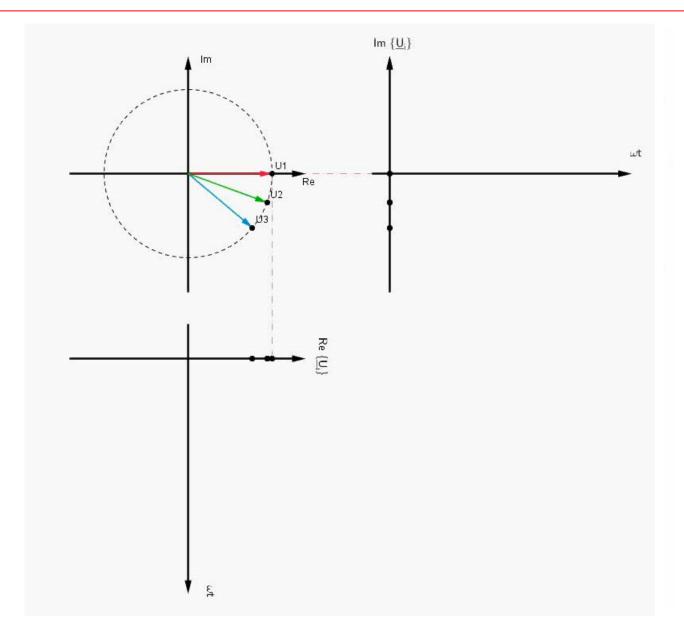
Calcul complexe associé

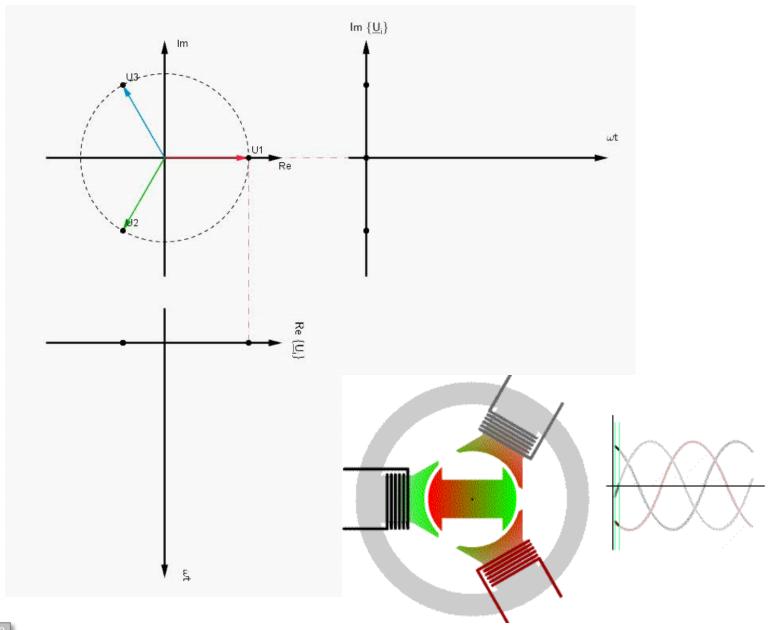
Diagramme des phaseurs











Exercices semaine 6

Laboratoire d'actionneurs intégrés (LAI)

Electrotechnique I

§ 6.7.2 Valeurs complexes et phaseurs - Exercice

Soit les fonctions réelles sinusoïdales suivantes :

1.
$$g_1(t) = 2\sin(3t+3)$$

2.
$$g_2(t) = 5\sin(3t)$$

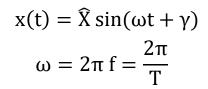
3.
$$g_3(t) = 3 \cdot \sqrt{2} \sin \left(2t - \frac{\pi}{3}\right)$$

4.
$$g_4(t) = \sin\left(6\pi t + \frac{\pi}{4}\right)$$

- a) Pour chaque fonction, donnez :
 - o Sa valeur crête \hat{X}
 - \circ Sa pulsation ω et sa fréquence f
 - \circ Sa phase initiale γ
- b) Puis écrivez la sous les formes suivantes :
 - o Valeur instantanée complexe
 - o Phaseur (complexe) de crête
 - o Phaseur (complexe) efficace

Remarque : le mot complexe est mis entre parenthèses car la notion de phaseur n'existe que dans le plan complexe.

c) Dessiner le phaseur efficace dans le plan complexe



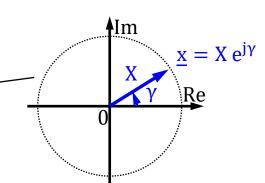
$$\underline{\mathbf{x}} = \widehat{\mathbf{X}} \, \mathbf{e}^{\mathbf{j}(\omega t + \gamma)}$$

$$\frac{\overline{\hat{X}}}{\widehat{X}} = \widehat{X} e^{j \gamma}$$

$$X = X e^{j \gamma}$$

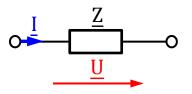
Pour le régime sinusoïdal

$$X = \frac{\widehat{X}}{\sqrt{2}}$$



6.4 Définitions

Impédances



Définitions

$$\underline{Z} = \frac{\underline{u}}{\underline{i}} = \frac{\underline{U}}{\underline{I}} = \frac{\widehat{\underline{U}}}{\widehat{\underline{I}}}$$

Propriétés

$$\underline{Z} = \frac{\underline{U}}{\underline{I}}$$

$$= \frac{U e^{j \alpha}}{I e^{j \beta}}$$

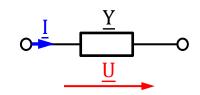
$$= \frac{U}{I} e^{j(\alpha - \beta)}$$

$$= Z e^{j\phi}$$

$$Z = \frac{\underline{U}}{I}$$

$$\varphi = \alpha - \beta$$

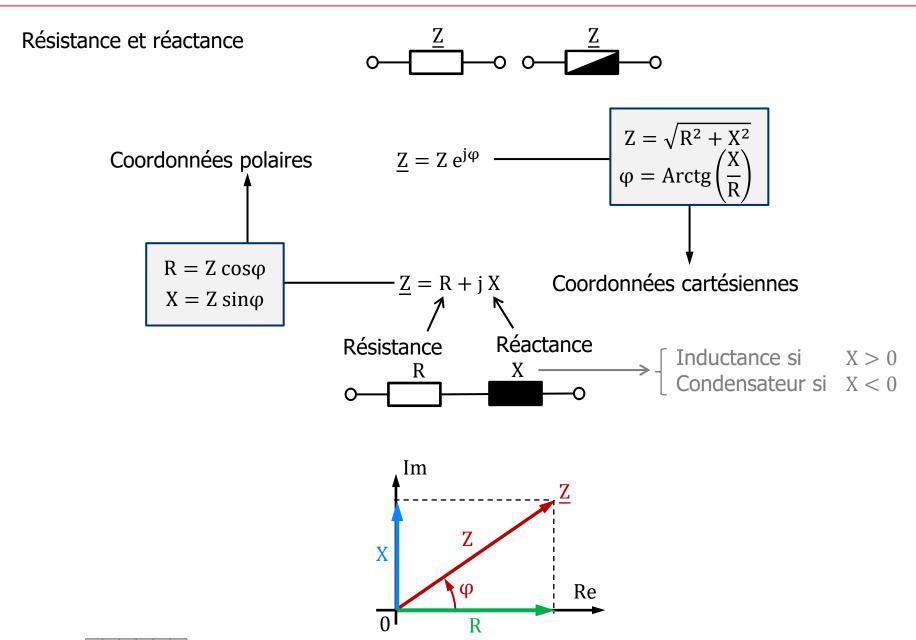
admittances



$$\underline{Y} = \frac{1}{\underline{Z}}$$

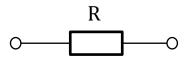
$$\underline{Y} = \frac{1}{Z} e^{-j\phi}$$
$$= Y e^{-j\phi}$$

6.4.3 Résistance et réactance

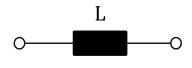


Impédance de R (6.4.4), L (6.4.5) et C (6.4.6)

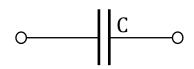
Résistance



Inductance



Condensateur



Réel

$$u = R \cdot i$$

$$u = L \cdot \frac{di}{dt}$$

$$i = C \cdot \frac{du}{dt}$$

Complexe

$$u = R \cdot i$$

$$\underline{\mathbf{u}} = \mathbf{j} \omega \mathbf{L} \cdot \underline{\mathbf{i}}$$

$$\underline{\mathbf{u}} = \frac{1}{\mathbf{j}\omega\mathbf{C}} \cdot \underline{\mathbf{i}}$$

Impédances

Coord. cartésiennes

$$\underline{Z}_R = R + j 0$$

$$\underline{Z}_{L} = 0 + j \omega L$$

$$\underline{Z}_{C} = 0 + j \frac{-1}{\omega C}$$

$$R_{C} \qquad X_{C}$$

Coord. polaires

$$\underline{Z}_{R} = R \cdot e^{j \cdot 0}$$

$$Z_{R} \qquad \varphi_{R}$$

$$\underline{Z}_{L} = \omega L \cdot e^{j \cdot \frac{\pi}{2}}$$

$$Z_{L} \qquad \varphi_{L}$$

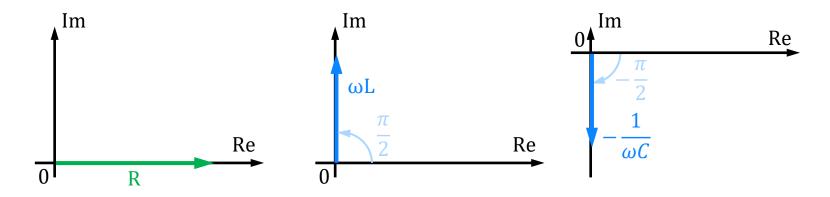
$$\underline{Z}_{C} = \frac{1}{\omega C} \cdot e^{j \cdot \left(-\frac{\pi}{2}\right)}$$

$$Z_{C}$$

$$\varphi_{C}$$

Impédances et admittances

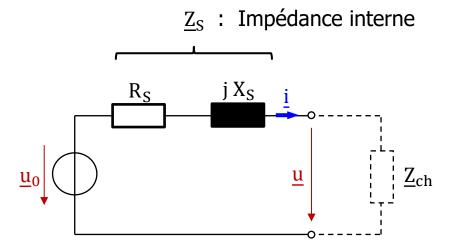
Résumé



	$Re{Z}$	$Im\{\underline{Z}\}$	Z	φ	<u>Z</u>
R	R				R
L	0	ωL	ωL	π/2	jωL
С	0			$-\pi/2$	

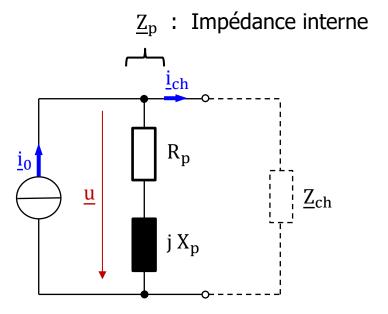
Source avec impédance interne

Source de tension



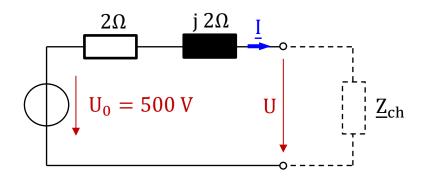
Source avec impédance interne

Source de courant



Source avec impédance interne

Source réelle: Exemple



Calcul du courant I et la tension U dans le circuit si \underline{Z}_{ch} prend les valeurs suivantes:

a)
$$\underline{Z}_{ch} = 48 \Omega$$
 (résistance)

b)
$$\underline{Z}_{ch} = j 48 \Omega$$
 (inductance)

c)
$$\underline{Z}_{ch} = -j \, 48 \, \Omega$$
 (condensateur)

a)
$$\underline{Z}_{ch} = 48 \Omega$$

$$\underline{Z}_{tot} = \underline{Z}_i + \underline{Z}_{ch}$$

$$= 2\Omega + j 2\Omega + 48\Omega$$

$$= 50\Omega + j 2\Omega$$

$$\left|\underline{Z}_{\text{tot}}\right| = \sqrt{50^2 + 2^2} \cong 50\Omega$$

$$I = \frac{U_0}{Z_{\text{tot}}} \cong \frac{500\text{V}}{50\Omega} \cong 10\text{A}$$

$$U = Z_{ch} \cdot I \cong 48\Omega \cdot 10A$$
$$\cong 480V$$

b)
$$Z_{ch} = j 48 \Omega$$

$$\underline{Z}_{tot} = \underline{Z}_i + \underline{Z}_{ch}$$

$$= 2\Omega + j 2\Omega + j 48\Omega$$

$$= 2\Omega + j 50\Omega$$

$$\left|\underline{Z}_{\text{tot}}\right| = \sqrt{2^2 + 50^2} \cong 50\Omega$$

$$I = \frac{U_0}{Z_{\text{tot}}} \cong \frac{500\text{V}}{50\Omega} \cong 10\text{A}$$

$$U = Z_{ch} \cdot I \cong 48\Omega \cdot 10A$$
$$\cong 480V$$

c)
$$Z_{ch} = -j 48 \Omega$$

$$\underline{Z}_{tot} = \underline{Z}_i + \underline{Z}_{ch}$$

$$= 2\Omega + j 2\Omega - j 48\Omega$$

$$= 2\Omega - j 46\Omega$$

$$\left|\underline{Z}_{\mathrm{tot}}\right| = \sqrt{2^2 + 46^2} \cong 46\Omega$$

$$I = \frac{U_0}{Z_{tot}} \cong \frac{500V}{46\Omega} \cong 10.9A$$

$$U = Z_{ch} \cdot I \cong 48\Omega \cdot 10.9A$$
$$\cong 523V$$

Conclusion

- Régime monophasé
- Représentation complexe
- Calcul complexe associé
- Représentation de Fresnel
- Impédances et admittances

Résumé

